Sunday, May 15, 2016

Why Quantum Gravity

There is not yet a quantum gravity that is consistent with the gravity of general relativity (GR) and this is fundamentally because the determinate GR has perfectly defined geodesic paths for all sources. In our quantum universe, however, there are no absolutely determinate paths and it turns out that GR says nothing about the paths of objects at very small Planck scale and GR says nothing about the paths of objects inside of the event horizon of a black hole. Quantum gravity simply does not have completely determinate futures and yet GR provides absolutely determinate paths with well-defined distortions of space and time.

In contrast to GR, discrete aether is a quantum gravity (QG) that is completely consistent with GR within its limits and QG further defines object futures at both the Planck scale as well as at the black hole scale.

The deflection of starlight by the sun, d, occurs at about twice the value expected by classical Newton's gravity and the mass-equivalent energy of light. Science has known this for many decades. Einstein's general relativity explained this extra deflection in the figure below as a first order expansion of the GR equation that shows how gravity distorts space and time. That is, given the equivalent mass of light, GR predicts twice the deflection of Newton’s classical gravity and numerous measurements validate that fact.



Discrete aether and its QG provide a different explanation for starlight deflection by the sun, but that prediction also agrees with measurements since quantum effects show a factor of two doubling for both charge and gravity. For the quantum spin of an electron the gyromagnetic ratio, g, also has about twice the classical spin of a charged sphere. For an electron, the gyromagnetic ratio is how it oscillates in a magnetic field as 
where e is electron charge, me electron mass, and the g-factor comes from quantum spin along with a perturbation series due to quantum field self energy as
In quantum gravity (QG), starlight photon deflection is how the spin of light oscillates in a gravity field and so starlight QG deflection conforms to the same g-factor as charge force as

So quantum gravity and its self energy actually have the same g value for light deflection as that of quantum spin. The quantum g-factor of about two comes from the complementary phases of quantum spin states  of a photon and the photon self-energy means that the effect is not exactly two. In effect, an electron spin can be up or down in a magnetic field and that difference corresponds to the frequency or energy of the quantum transition from spin up to down.

The up or down duality of quantum phase has no classical meaning in GR and in effect quantum spin doubles the frequency or energy of a quantum action from the action of a classical spinning charge. The distortion of space and time embodied within GR emulates the factor of two that fundamentally derives from the nature of QG.

A classical spinning charge will only orient itself up as a precession along a magnetic field and there is no meaning for up versus down in the absence of a magnetic field since the spinning charge would have opposite phase from up and down. A rotating classical charge in a magnetic field radiates with a classical frequency or energy that is one-half of the quantum frequency and a classical spinning charge then slows down as it radiates and loses energy. A quantum spin reorients when it radiates, but since a quantum spin exists in a superposition state of both discrete spin states, a quantum spin cannot radiate without some kind of electric or magnetic field. The meaning for a classical transition to a down spin is to spin in the opposite phase, changing the phase of its radiation by p. But a classical spinning charge always precesses along the magnetic field lines for both spin phases.

The rotation of a quantum charge as spin results in a quantum precession frequency that is twice the classical precession frequency of a classical rotating charge in a magnetic field. The quantum precession frequency is defined by g ~ 2, and is consistent with measurements while the classical precession frequency is likewise consistent with radiation of macroscopic charge rotation in a magnetic field. This factor of two turns out to be the key for both quantum gravity as well as quantum spin and g ~ 2 ends up predicting all of the same effects as are observed and predicted by the spacetime distortions of GR.

In effect, the classical radiation of opposite phase would slow the rotation down and eventually reverse it and that total energy would be twice the inertial energy of the original spin. The classical object would not change direction up or down, but the sense of its spin. It would now radiate just as the first spin but with a different phase. Therefore a quantum spin is like a classical spin the is in resonance with an external field oscillation.

There is a very fundamental reason for the correspondence between quantum spin and quantum gravity; a distorted spacetime emerges from QG just as GR distorts spacetime to first order. However, QG and its biphotonic exchange particle, the graviton, have quantum exchange and phase coherence just like quantum charge.

Einstein showed that gravity distorts the space and time around bodies and that distortion determines the paths or geodesics of those bodies as just straight lines in the distorted spacetime. Therefore there is no such thing as a gravity self energy since that gravity self energy is really just stored in the spacetime distortion, but there is still a g = 2 deflection.

In QG, the quadrupole of a gravity biphoton also shows quantum spin states, but now with S = 2 instead of S = ½ and the quantum gravity self energy further alters a body’s gravity field with the rotating quadrupole biphotons of a matter body by a factor of two. In effect, the biphoton quadrupole also oscillates up or down in a gravity field and so the photon deflection is twice the classical expectation based on mass energy equivalence. In addition, there is a gravity self energy of a photon that further increases the effect of starlight deflection from the expectations of Newton’s classical gravity and the mass equivalence of light.

The notions of continuous space and time emerge as dimensionless scalings; time from an electron orbit period and space from the electron charge diameter. Distortions of space and time simply emerge from the measurements of light pulse time delays and color shifts from objects and action. Every object has the properties of light pulse time delay and color shift and it is from those measurements of objects with light that both Newton and GR notions of continuous space and time emerge. Thus spacetime appears naturally distorted by GR since the object time delay and color shift by quantum gravity show the same effects as classical time delay and color shift.


The figure below shows how gravity biphotons relate to the photon exchange bonds of charge for atoms and molecules. The hydrogen charge bond is an exchange particle of Rydberg energy at 3.3 fs period, and that exchange particle is in resonance with the electron in hydrogen with a period tB of 1.1e-21 s, the ratio of which what eventually defines c as 3e8 m/s along with a charge radius. The orbital period of the electron relative to the period of the universe is the scaling that defines gravity as proportional to charge force.

The bonding state of gravity is between the source and the universe and so in a sense, all reality is real because of gravity. The effects of a biphoton are in effect due to the symmetry of the wrapped universe and not really due to the time or space between the CMB and matter. The bonding states of charge are between a source and observer and so without an observer, the universe is the ultimate observer, wrapped by symmetry back onto itself. An observer absorbs a photon and that measurement represents a bonding state that makes the source real. A photon released to the universe represents the same reality for the same source, but at a much greater time scale wrapped onto the present time and space.




Wednesday, May 11, 2016

Proton Diameter

The proton diameter is a fundamental constant that describes a very slight shift in the energy of two states of hydrogen. An S state shows non-zero electron density at the proton in hydrogen and therefore shifts in energy while a P state has a near zero electron density at the proton. This energy shift defines the radius of the proton.

If the proton radius is truly fundamental, S and P states of hydrogen should show the same kind of shifts for hydrogen that has the muon instead of the electron. A very interesting experiment measures the diameter of the proton by means of the spectroscopy of the muon form of hydrogen and finds a much different shift in the frequency of muon hydrogen lines due to the finite diameter of the proton. The electron in the hydrogen S ground state has a certain probability of being at the proton surface but not inside the proton diameter and so the S state frequency shifts very slightly as a result. The electron in a P excited state on the other hand has no probability for being at the proton center and a very low probability of being at the proton surface as well.

The muon form of hydrogen is a hydrogen with a muon instead of an electron in orbit around the proton. The muon charge is the same as the electron, but the muon mass is 207 times that of hydrogen but decays very quickly with a lifetime of 2 microseconds. Even with a short lifetime, the quantum correction should yield the same proton radius for both electron as well as muon hydrogen. Instead, the proton radius is much different for muonic hydrogen as the figure shows.


There are other calculations that show the proton radius, but neither of them seems very realistic since they do not depend on the progressive perturbation of approximations that help define reality.

Each of the electron and muonic spectroscopy results are valid by mainsteam science and are determined within mutually exclusive uncertainties. There is therefore not a single proton radius and neither explanation is more valid than the other.

Thus, there is a dilemma. What is the real proton radius...0.8758 or 0.84087 fm? Both measurements of atomic hydrogen and muonic hydrogen appear to have sufficient precision to preclude each other.

One alternative explanation is in aethertime, where energy states also depend on lifetimes. In aethertime, incorporation of the muon lifetime shifts the observed of the muonic hydrogen to now agree with that of atomic hydrogen. The shift is

which the figure above shows as 0.075 THz versus the observed 0.072 THz, now well within the precision of both measurements.

While in mainstream science, the lifetime of a muon state does not affect its energy, in aethertime, the lifetime of a state does indeed affect its energy if only very slightly.

Note that Gary Simpson has reported a quaternion calculation that shows a similar radius to muonic hydrogen, but far different from atomic hydrogen as the figure shows. Since no error measure was cited, it is not clear what this calculation means.

Note that Haramein has used microscopic black holes to predict the charge radius of the proton that agrees with the muon result, but there is no correct result and both results of electron and muon hydrogen are equally valid. The charge radius of the proton and electron are the same and are very different from the "hard" 1/e radius of the proton. The electron, you see, has no radius other than its charge radius.







Sunday, May 1, 2016

Black Holes Are Not Aethertime Singularties

Black holes represent singularities in space and time for body-centered force since the accretion of mass eventually results in the complete absorption of light and so black holes do not shine. But in aethertime, black holes are not singularities of matter and action since black holes still have both matter and action. Because continuous space and time emerge from matter and action of spin in aethertime, it is the spin of a black hole that retains the information of the light and matter the black hole absorbs. There are lots of difficulties with the notions of continuous space and time and the black holes of mainstream science are simply a result of the limitations of these notions.

Continuous space and time are both infinite divisible, which is a consequence that dates back to the Greek philosopher Zeno as well as to many of the other ancients. The Chinese Dao presumes the infinite divisibility of space and time is in the qi or flow of energy among objects from yin to yang, earth to space. The Indian Vedas detail this infinite divisibility with the notion of Vishnu, who connects objects created by Brahma to those destroyed by Shiva in a perpetual cycle of reincarnation. The Buddhist dharma or teaching is that the infinitely divisible connects nirvana or heaven to the sangha or believers. And Christians teach that the holy spirit is an infinitely divisible connection between a father in heaven to a son on earth.

The ancient Greek philosopher Democritus declared that objects are not after all infinitely divisible but rather objects are made up of finite atoms. Today science instead concludes that quark pairs are the finite particles that make up all matter, but this is consistent with the notion of finite and not infinite divisibility. Presuming that the universe is likewise not infinitely divisible means that the universe is made up of some kind of finite aether particles.

As a result, the universe is not therefore made up of empty space that is filled with a finite aether, rather the universe is made up of a finite aether from which emerges the notions of continuous space and time. A black hole is an object of matter that exists within continuous space and time and the logic of general relativity works only up until the space and time of the event horizon of a black hole, which is its spatial surface. As a result, the inside of a black hole does not make any sense in general relativity.

In the logic of aethertime, a black hole exists with a mass, a time delay, and an action or motion relative to an observer. Motion in this sense is the matter equivalent change and motion through space as velocity emerges from the matter equivalent change of objects. Without an empty space to fill with objects, there is no sense to an inside versus an outside since the entire black hole simply has the single property of one time delay, one mass relative to an observer, and one matter change, its spin.

There is a further information paradox for a black hole that supposes that the information of the objects that accreted into the black hole cannot simply disappear from the universe. In aethertime, it is the further property of quantum phase and spin that holds this information and yet quantum phase and spin have no meaning in general relativity. The black hole has the quantum property of phase coherence and it is the phase coherence of a black hole spin that preserves all of the information from all of the objects that accreted to form the black hole.

Given the limited notions of continuous space and time, it is the way that a black hole spins that captures all of the information of objects that accrete along with black hole mass, time delay, and matter equivalent velocity. But in aethertime, all black holes have angular momentum and therefore exist as a centered torus as the figure shows. Similar to the electron spin that represents all of its fundamental properties, black hole spin represents all of its properties as well.

Notions of continuous volume in space and continuous time come from the different time delays that we measure from different parts of an object. Although all objects invariably do spin, spin in general relativity is a simple manifestation of the conservation of the angular momentum of the objects that it accretes.

However, the quantum spin of every atom of an object contributes to the total quantum spin of the accreted object and so accretion changes an object's quantum spin as well as its classical spin. Although there is a large literature on the effects of angular momentum for a black hole, there does not seem to be much about the effects of the quantum spin of a black hole.

Since a black hole is fundamentally a pure quantum object in aethertime, the phase coherences of the black hole's precursor's electrons, nuclei, and quark pairs represent all of the rest of the information that made up those precursor objects along with mass, time delay, and matter equivalent velocity.